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Abstract

The problem of the quasisteady motion of a spherical fluid or solid particle with a slip-flow surface in a viscous fluid

perpendicular to two parallel plane walls at an arbitrary position between them is investigated theoretically in the limit

of small Reynolds number. To solve the axisymmetric Stokes equation for the fluid velocity field, a general solution is

constructed from the superposition of the fundamental solutions in both circular cylindrical and spherical coordinate

systems. The boundary conditions are enforced first at the plane walls by the Hankel transform and then on the particle

surface by a collocation technique. Numerical results for the hydrodynamic drag force exerted on the particle are

obtained with good convergence for various values of the relative viscosity or slip coefficient of the particle and of the

relative separation distances between the particle and the confining walls. For the motions of a spherical particle normal

to a single plane wall and of a no-slip sphere perpendicular to two plane walls, our drag results are in good agreement

with the available solutions in the literature for all relative particle-to-wall spacings. The boundary-corrected drag force

acting on the particle in general increases with an increase in its relative viscosity or with a decrease in its slip coefficient

for a given geometry, but there are exceptions. For a specified wall-to-wall spacing, the drag force is minimal when the

particle is situated midway between the two plane walls and increases monotonically when it approaches either of the

walls. The boundary effect on the particle motion normal to two plane walls is found to be significant and much

stronger than that parallel to them.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Problems concerning the migration of solid particles or fluid droplets through a viscous fluid at very small Reynolds

numbers have continued to receive much attention from investigators in the fields of chemical, biomedical, and

environmental engineering and science. The majority of these moving phenomena is fundamental in nature, but permits

one to develop rational understanding of many practical systems and industrial processes such as sedimentation,

flotation, coagulation, meteorology, motion of blood cells in an artery or vein, rheology of suspensions, and colloidal

studies. The theoretical study of this subject has grown out of the classic work of Stokes (1851) for a translating, no-slip,

rigid sphere in a viscous fluid.
e front matter r 2006 Elsevier Ltd. All rights reserved.
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Hadamard (1911) and Rybczynski (1911) extended independently Stokes’ analysis to the translation of a fluid sphere

in a second, immiscible fluid. Assuming continuous velocity and continuous tangential stress across the interface

between the fluid phases, they found that the force acting on a spherical droplet of radius a by the ambient fluid of

viscosity Z is

F0 ¼ �6pZa
3Zn þ 2

3Zn þ 3
U, (1)

where U is the migration velocity of the droplet and Z� is the internal-to-external viscosity ratio. Since the fluid

properties are arbitrary, Eq. (1) degenerates to the case of translation of a solid sphere (Stokes’ law) when Z�-N and

to the case of motion of a gas bubble with spherical shape in the limit Z�-0.

When one tries to solve the Navier–Stokes equation, it is usually assumed that no slippage arises at the solid–fluid

interfaces. Actually, this is an idealization of occurrence of the transport processes. The phenomenon that the adjacent

fluid (especially if the fluid is a slightly rarefied gas) can slip over a solid surface has been confirmed, both

experimentally and theoretically (Kennard, 1938; Ying and Peters, 1991; Hutchins et al., 1995). Presumably, any such

slipping would be proportional to the local velocity gradient next to the solid surface (see Eq. (18)), at least so long as

this gradient is small (Happel and Brenner, 1983). The constant of proportionality, b�1, may be termed a ‘‘slip

coefficient’’. Basset (1961) found that the force exerted by the surrounding fluid on a translating rigid sphere with a slip-

flow boundary condition at its surface (e.g., a settling aerosol sphere) is

F0 ¼ �6pZa
baþ 2Z
baþ 3Z

U, (2)

where U is the translational velocity of the particle. In the particular case of b-N, there is no slip at the particle

surface and Eq. (2) degenerates to Stokes’ law. When b ¼ 0, there is a perfect slip at the particle surface and Eq. (2) is

consistent with Eq. (1) (taking Zn ¼ 0). Note that, as can be seen from Eqs. (1) and (2), the unbounded flow field caused

by the migration of a ‘‘slip’’ solid sphere is the same as the external flow field generated by the same motion of a

spherical fluid droplet with a value of Z� equal to the parameter ba/3Z of the solid sphere.

In Eq. (2), the slip coefficient has been determined experimentally for various cases and found to agree with the

general kinetic theory of gases. It can be calculated from the formula

Z
b
¼ Cml, (3)

where l is the mean free path of a gas molecule and Cm is a dimensionless constant related to the momentum

accommodation coefficient at the solid surface. Although Cm surely depends upon the nature of the surface,

examination of the experimental data suggests that it will be in the range 1.0–1.5 (Davis, 1972; Talbot et al., 1980;

Loyalka, 1990). The slip-flow boundary condition is generally applicable in the continuum regime (with the Knudsen

number l/a51). The quantity Z/b is a length, which can be pictured by noting that the fluid motion is the same as if the

solid surface was displaced inward by a distance Z/b with the velocity gradient extending uniformly right up to no-slip

velocity at the surface.

In most practical applications of low-Reynolds-number motions, particles or droplets are not isolated (Keh and

Tseng, 1992; Keh and Chen, 1997) and the surrounding fluid is externally bounded by solid walls. Thus, it is important

to determine if the presence of neighboring boundaries significantly affects the movement of a particle or droplet. Using

spherical bipolar coordinates, Bart (1968) and Rushton and Davies (1973) examined the motion of a spherical fluid

droplet settling normal to a plane interface between two immiscible viscous fluids. This work is an extension of the

analyses of Maude (1961) and Brenner (1961), who independently analyzed the fluid motion generated by a no-slip

sphere moving perpendicular to a solid plane surface or to a free-surface plane. Wacholder and Weihs (1972) also

utilized bipolar coordinates to study the motion of a fluid sphere through another fluid normal to a no-slip or free plane

surface; their calculations agree with the results obtained by Bart in these limits. Hetsroni et al. (1970) used a method of

reflections to solve for the terminal settling velocity of a spherical fluid droplet moving axially at an arbitrary radial

location within a long circular tube filled with a viscous fluid. The wall effects experienced by a fluid sphere moving

along the axis of a circular tube were also examined by using a reciprocal theorem (Brenner, 1971) and an

approximative approach (Coutanceau and Thizon, 1981). The parallel motion of a spherical droplet in a quiescent

immiscible fluid at an arbitrary position between two parallel plane walls was studied by Shapira and Haber (1988)

using the method of reflections and by Keh and Chen (2001) using a boundary collocation technique. Approximate

analytical solutions and exact numerical solutions for the hydrodynamic drag force acting on the fluid droplet were

obtained as functions of Z�, a/b, and a/(b+c), where b and c are the respective distances from the droplet center to the

two plane walls.
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The boundary effects on solid particles with finite values of ba/Z are different, both physically and mathematically,

from those on fluid droplets of finite viscosities. Through an exact representation in spherical bipolar coordinates, Reed

and Morrison (1974) and Chen and Keh (1995) examined the creeping motion of a rigid sphere normal to an infinite

plane wall, where the fluid may slip at the solid surfaces. Later, the quasisteady translation of a slip spherical particle in

a spherical cavity was also theoretically studied (Keh and Chang, 1998; Lu and Lee, 2001). An analytical expression for

the wall-corrected drag force exerted on the particle located at the center of the cavity was derived in a closed form.

Recently, the slow translational and rotational motions of a slip sphere along the symmetric axis of a circular cylindrical

pore (Lu and Lee, 2002) and parallel to two plane walls at an arbitrary position between them (Chen and Keh, 2003)

have been investigated with the use of the boundary collocation method. Numerical results for the hydrodynamic drag

force and torque acting on the particle were obtained for various cases.

The purpose of this article is to obtain exact solutions for the slow translational motion of a spherical fluid or solid

particle with a slip surface perpendicular to two parallel plane walls at an arbitrary position between them. The

creeping-flow equations applicable to the systems are solved by using a combined analytical–numerical method with the

boundary collocation technique (Ganatos et al., 1980), and the wall-corrected drag force acting on the particle is

obtained with good convergence for various cases. For the special cases of movement of a spherical particle with a no-

slip surface and/or normal to a single plane wall, our calculations show excellent agreement with the available solutions

in the literature. Because the governing equations and boundary conditions concerning the general problem of motion

of a particle at an arbitrary position between two parallel plane walls in an arbitrary direction are linear, its solution can

be obtained as a superposition of the solutions for its two subproblems: motion parallel to the plane walls, which was

previously examined (Keh and Chen, 2001; Chen and Keh, 2003), and motion normal to the confining walls, which is

treated in this work.
2. Formulation for the motion of a spherical fluid droplet perpendicular to two plane walls

In this section, we consider the quasisteady creeping motion caused by a fluid sphere of radius a translating with a

constant velocity U ¼ Uez in a second, immiscible fluid perpendicular to two infinite parallel plane walls whose

distances from the center of the droplet are b and c, as shown in Fig. 1. Here (r, f, z) and (r, y, f) denote the circular
cylindrical and spherical coordinate systems, respectively, with the origin of coordinates at the droplet center, and ez is

the unit vector in the z direction. We set bpc throughout this work, without the loss of generality. The droplet is

assumed to be sufficiently small so that interfacial tension (which is assumed to be fairly large) maintains its spherical

shape. The external fluid is at rest far away from the droplet. The objective is to determine the correction to Eq. (1) for

the motion of the droplet due to the presence of the plane walls.

The fluids inside and outside the droplet are assumed to be incompressible and Newtonian. Owing to the low

Reynolds number, the fluid motion is governed by the quasisteady fourth-order differential equations for viscous

axisymmetric creeping flows,

E2ðE2CÞ ¼ 0 ðrXaÞ, (4a)

E2ðE2C1Þ ¼ 0 ðrpaÞ, (4b)
b

a

c
r

U

z

�

�

Fig. 1. Geometric sketch of the translation of a spherical droplet perpendicular to two plane walls at an arbitrary position between

them.
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where C1 and C are the Stokes stream functions for the flow inside the droplet and for the external flow, respectively,

which are related to their corresponding velocity components in cylindrical coordinates by

vr ¼
1

r
qC
qz

, (5a)

vz ¼ �
1

r
qC
qr

(5b)

and the Stokes operator E2 has the form

E2 ¼ r
q
qr

1

r
q
qr

� �
þ

q2

qz2
. (6)

The boundary conditions for the fluid velocities at the droplet surface, where both velocity and shear stress are

continuous, on the plane walls, and far removed from the droplet are

r ¼ a : vr ¼ v1r, (7a)

vz ¼ v1z, (7b)

vr tan yþ vz ¼ U , (7c)

try ¼ t1ry, (7d)

z ¼ c;�b : vr ¼ vz ¼ 0, (8)

r!1 : vr ¼ vz ¼ 0. (9)

Here, try and t1ry are the viscous stresses for the external flow and the flow inside the droplet, respectively.

To solve the external flow field, we express the stream function in the form (Ganatos et al., 1980)

C ¼ Cw þCp. (10)

Here Cw is a separable solution of Eq. (4a) in cylindrical coordinates that represents the disturbance produced by the

plane walls and is given by a Fourier–Bessel integral

Cw ¼

Z 1
0

AðoÞeoz þ BðoÞe�oz þ CðoÞozeoz þDðoÞoze�oz½ �rJ1ðorÞdo, (11)

where A(o), B(o), C(o), and D(o) are unknown functions of the separation variable o. The second part of C, denoted

by Cp, is a separable solution of Eq. (4a) in spherical coordinates representing the disturbance generated by the droplet

and is given by

Cp ¼
X1
n¼2

Bnr�nþ1 þDnr�nþ3
� �

G�1=2n ðcos yÞ, (12)

where G�1=2n is the Gegenbauer polynomial of the first kind of order n and degree �1
2
; Bn and Dn are unknown constants.

Note that the boundary condition in Eq. (9) is immediately satisfied by a solution of the form given by Eqs. (10)–(12).

The general solution to Eq. (4b) for the internal flow field can be expressed as

C1 ¼
X1
n¼2

Anrn þ Cnrnþ2
� �

G�1=2n ðcos yÞ, (13)

or

v1r ¼
X1
n¼2

Ana
ð1Þ
1n ðr; yÞ þ Cna

ð1Þ
2n ðr; yÞ

h i
, (14a)

v1z ¼
X1
n¼2

Ana
ð2Þ
1n ðr; yÞ þ Cna

ð2Þ
2n ðr; yÞ

h i
, (14b)
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where the definitions of the functions aðjÞin ðr; yÞ for i and j equal to 1 or 2 are given by Eqs. (A.1) and (A.2) in Appendix A,

and An and Cn are unknown constants. A solution of this form satisfies the requirement that the velocity is finite for any

position within the droplet.

Substituting the stream function C given by Eqs. (10)–(12) into the boundary conditions in Eq. (8) and applying the

Hankel transform on the variable r lead to a solution for the functions A(o), B(o), C(o), and D(o) in terms of the

coefficients Bn and Dn. After the substitution of this solution into Eqs. (10)–(12), the fluid velocity components can be

expressed as

vr ¼
X1
n¼2

Bng
ð1Þ
1n ðr; yÞ þDng

ð1Þ
2n ðr; yÞ

h i
, (15a)

vz ¼
X1
n¼2

Bng
ð2Þ
1n ðr; yÞ þDng

ð2Þ
2n ðr; yÞ

h i
, (15b)

where the definitions of the functions gðjÞin ðr; yÞ for i and j equal to 1 or 2 are given by Eqs. (A.3) and (A.4) (in integral

forms which must be evaluated numerically).

The only boundary conditions that remain to be satisfied are those on the droplet surface. Substituting Eqs. (14) and

(15) into Eq. (7), one obtains

X1
n¼2

Bng
ð1Þ
1n ða; yÞ þDng

ð1Þ
2n ða; yÞ � Ana

ð1Þ
1n ða; yÞ � Cna

ð1Þ
2n ða; yÞ

h i
¼ 0, (16a)

X1
n¼2

Bng
ð2Þ
1n ða; yÞ þDng

ð2Þ
2n ða; yÞ � Ana

ð2Þ
1n ða; yÞ � Cna

ð2Þ
2n ða; yÞ

h i
¼ 0, (16b)

X1
n¼2

Bn gð1Þ1n ða; yÞ tan yþ gð2Þ1n ða; yÞ
h i

þDn gð1Þ2n ða; yÞ tan yþ gð2Þ2n ða; yÞ
h in o

¼ U , (16c)

X1
n¼2

Bngn1nða; yÞ þDngn2nða; yÞ � ZnAnan1nða; yÞ � ZnCnan2nða; yÞ
� �

¼ 0, (16d)

where the functions aninðr; yÞ and gninðr; yÞ for i ¼ 1 or 2 are defined by Eqs. (A.13) and (A.14) (in which the integration

must be performed numerically).

To satisfy the conditions in Eq. (16) exactly along the entire surface of the droplet would require the solution of the

entire infinite array of unknown constants An, Cn, Bn, and Dn. However, the collocation method (O’Brien, 1968;

Ganatos et al., 1980; Keh and Chen, 2001) enforces the boundary conditions at a finite number of discrete points on the

semi-circular longitudinal arc of the sphere (from y ¼ 0 to p) and truncates the infinite series in Eqs. (13)–(15) into finite

ones. If the spherical boundary is approximated by satisfying the conditions in Eq. (7) at N discrete points on the

generating arc, the infinite series in Eqs. (13)–(15) are truncated after N terms, resulting in a system of 4N simultaneous

linear algebraic equations in the truncated form of Eq. (16). This matrix equation can be numerically solved to yield the

4N unknown constants An, Cn, Bn, and Dn required in the truncated form of Eqs. (14) and (15). The fluid velocity field is

completely obtained once these coefficients are solved for a sufficiently large number of N. The accuracy of the

boundary-collocation/truncation technique can be improved to any degree by taking a sufficiently large value of N.

Naturally, as N-N the truncation error vanishes and the overall accuracy of the solution depends only on the

numerical integration required in evaluating the functions gðjÞin and gnin in Eq. (16).

The drag force F ¼ Fez exerted by the fluid on the droplet can be determined from (Happel and Brenner, 1983)

F ¼ 4pZD2. (17)

This expression shows that only the lowest-order coefficient D2 contributes to the hydrodynamic force acting on the

droplet.
3. Solutions for the motion of a spherical fluid droplet perpendicular to two plane walls

The numerical results for the creeping motion of a spherical droplet of an arbitrary viscosity perpendicular to two

plane walls at an arbitrary position between them, obtained by using the boundary collocation method described in the
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previous section, are presented in this section. The system of linear algebraic equations to be solved for the coefficients

An, Cn, Bn, and Dn is constructed from Eq. (16). All the numerical integrations to evaluate the functions gðjÞin and gnin were
done by the 180-point Gauss–Laguerre quadrature.

When specifying the points along the half-circular generating arc of the fluid sphere (with a constant value of f)
where the boundary conditions are to be exactly satisfied, the first points that should be chosen are y ¼ 0 and p, since
these points control the gaps between the droplet and the plane walls. In addition, the point y ¼ p=2 which defines the

projected area of the droplet normal to the direction of motion is also important. However, an examination of the

system of linear algebraic equations in Eq. (16) shows that the matrix equations become singular if these points are

used. To overcome this difficulty, these points are replaced by closely adjacent points, i.e., y ¼ d, p/2�d, p/2+d, and
p�d (Ganatos et al., 1980). Additional points along the boundary are selected as mirror-image pairs about the plane

y ¼ p=2 to divide the two quarter-circular arcs of the droplet into equal segments. The optimum value of d in this work

is found to be 0.011, with which the numerical results of the hydrodynamic drag force acting on the particle converge

satisfactorily.

In Table 1, the collocation solutions for the hydrodynamic drag force exerted on a fluid sphere moving perpendicular

to a single plane wall (with c-N) for various values of a/b and Z� are presented. The drag force F0 acting on an

identical droplet in an unbounded fluid, given by Eq. (1) (with F0 ¼ F0ez), is used to normalize the boundary-corrected

values. Obviously, F=F0 ¼ 1 as a=b ¼ 0 for any value of Z�. The accuracy and convergence behavior of the truncation

technique depends principally upon the ratio a/b. All of the results obtained under this collocation scheme converge to

at least five significant figures. For the difficult case of a=b ¼ 0:999, the number of collocation points N ¼ 200 is

sufficiently large to achieve this convergence. Our collocation results agree excellently with the numerical solutions

obtained by Bart (1968) using spherical bipolar coordinates. As expected, the results in Table 1 illustrate that the drag

force on the droplet is a monotonic increasing function of a/b, and will become infinite in the limit a=b ¼ 1, for any

given value of Z�. In general, the normalized wall-corrected drag force on the droplet increases monotonically with an

increase in Z�, keeping a/b unchanged. Interestingly, when the value of a/b is very close to unity (say, greater than about

0.995), F/F0 first decreases with an increase in Z� from Zn ¼ 0, reaches a minimum at some finite value of Z�, and then

increases with increasing Z� to the limit Z�-N.

Some converged collocation solutions for the normalized drag force F/F0 are presented in Table 2 for the motion of a

spherical droplet perpendicular to two plane walls at two particular positions between them (with b=ðbþ cÞ ¼ 0:25 and

0.5) for various values of a/b and Z�. For the special case of a rigid sphere (with Z�-N), our results agree well with the

previous solutions obtained by a method of reflection (Ho and Leal, 1974) and by a similar collocation method

(Ganatos et al, 1980). Analogous to the situation of translation of a fluid sphere normal to a single plane wall, for a

constant value of b/(b+c), Table 2 indicates that the normalized drag force on the droplet increases monotonically with

an increase in a/b (again, F=F0 ¼ 1 as a=b ¼ 0 and F/F0-N as a/b-1) for a fixed value of Z� and with an increase in

Z� for a given value of a/b not too close to unity.
Table 1

The normalized drag force F/F0 experienced by a spherical droplet translating normal to a single plane wall at various values of a/b

and Z�

a/b F/F0

Zn ¼ 0 Zn ¼ 1 Zn ¼ 10 Zn ¼ 1

0.1 1.08110 1.10318 1.12194 1.12619

0.2 1.17678 1.22849 1.27440 1.28509

0.3 1.29224 1.38300 1.46801 1.48843

0.4 1.43611 1.57854 1.72084 1.75635

0.5 1.62382 1.83605 2.06544 2.12554

0.6 1.88574 2.19600 2.56622 2.66954

0.7 2.29122 2.74848 3.37017 3.55939

0.8 3.04340 3.74759 4.90393 5.30532

0.9 5.13001 6.35713 9.18424 10.44054

0.95 9.08847 10.91225 17.01655 20.57616

0.975 16.79597 19.10329 31.23217 40.71269

0.99 39.57004 41.44260 68.66238 100.8942

0.995 77.27764 76.32880 123.3256 201.0327

0.999 377.07 336.411 472.695 998.69
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Table 2

The normalized drag force F/F0 experienced by a spherical droplet translating normal to two parallel plane walls at various values of a/

b, b/(b+c), and Z�

b/(b+c) a/b F/F0

Zn ¼ 0 Zn ¼ 1 Zn ¼ 10 Zn ¼ 1

0.25 0.1 1.08227 1.10471 1.12378 1.12811

0.2 1.17957 1.23227 1.27912 1.29003

0.3 1.29716 1.38994 1.47699 1.49792

0.4 1.44384 1.58980 1.73590 1.77240

0.5 1.63518 1.85300 2.08885 2.15071

0.6 1.90172 2.22023 2.60069 2.70697

0.7 2.31303 2.78178 3.41890 3.61288

0.8 3.07247 3.79189 4.97052 5.37938

0.9 5.16808 6.41435 9.27241 10.54051

0.95 9.13181 10.97649 17.11657 20.69145

0.975 16.84214 19.17105 31.33795 40.83617

0.99 39.61798 41.51236 68.77117 101.0227

0.995 77.32619 76.39922 123.4350 201.1630

0.999 377.11 336.482 472.805 998.83

0.5 0.1 1.10714 1.13710 1.16285 1.16873

0.2 1.23999 1.31374 1.38097 1.39686

0.3 1.40911 1.54473 1.67728 1.70994

0.4 1.63182 1.85358 2.08858 2.14942

0.5 1.93887 2.28109 2.67966 2.78920

0.6 2.39076 2.90613 3.57787 3.77653

0.7 3.12597 3.90534 5.07385 5.45347

0.8 4.55048 5.78039 8.01261 8.84044

0.9 8.63955 10.84416 16.39942 19.00351

0.95 16.51271 19.85195 31.92101 39.22095

0.975 31.90530 36.16910 60.22857 79.46650

0.99 77.44030 80.79911 134.9544 199.8128

0.995 152.85 150.5510 244.202 400.085

0.999 752.47 670.721 942.851 1995.46
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Fig. 2 shows the collocation results for the hydrodynamic drag force exerted on a gas bubble (with Z�-0) moving

perpendicular to two plane walls at various position between them. The dashed curves (with a/b ¼ constant) illustrate

the effect of the position of the second wall (at z ¼ c) on the drag force for various values of the relative sphere-to-wall

spacing b/a. The solid curves (with 2a/(b+c) ¼ constant) indicate the variation of the drag as a function of the bubble

position at various values of the relative wall-to-wall spacing (b+c)/2a. At a constant value of 2a/(b+c), analogous to

the corresponding case of a solid sphere (Ganatos et al., 1980), the bubble (or a droplet with a finite value of Z�, whose
result is not exhibited here but can also be obtained accurately) experiences a minimum drag when it is located midway

between the two walls (with c ¼ b), and the drag force increases monotonically as the bubble or droplet approaches

either of the walls.

In Fig. 3, the normalized drag force acting on a spherical droplet situated midway between two parallel plane walls

(with c ¼ b) undergoing perpendicular translation is plotted by solid curves as a function of a/b for various values of Z�.
The corresponding drag on the droplet when the second wall is not present (with c-N) is also plotted by dashed curves

in the same figure for comparison. It can be seen from this figure (or from a comparison between Tables 1 and 2) that,

for an arbitrary combination of parameters a/b and Z�, the assumption that the results for two walls can be obtained by

simple addition of the single-wall effects always overestimates the correction to the hydrodynamic drag on a droplet.

Because the governing equations and boundary conditions for the general problem of creeping motion of a droplet in

an arbitrary direction between two parallel plane walls are linear, the net solution can be obtained as a superposition of

the solutions for its two subproblems: motion perpendicular to the plane walls, which is examined in this paper, and

motion parallel to the confining boundaries. The collocation solutions for the slow motion of a spherical droplet
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Fig. 2. Plots of the normalized drag force F/F0 on a spherical gas bubble (with Z�-0) translating perpendicular to two plane walls

versus the ratio b/(b+c) with a/b and 2a/(b+c) as parameters.
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Fig. 3. Plots of the normalized drag force F/F0 on a spherical droplet situated midway between two parallel plane walls (with c ¼ b)

undergoing perpendicular translation versus the ratio a/b with Z� as a parameter. The dashed curves are plotted for the translation of

an identical droplet normal to a single plane wall for comparison.
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parallel to two plane walls have already been obtained (Keh and Chen, 2001), and it was found that the wall-corrected

normalized drag force acting on the droplet also increases with an increase in the viscosity ratio Z�. A comparison

between those results and our solutions indicates that, as expected, the plane walls exert the most influence (or greatest

drag) on the droplet when its migration occurs normal to them, and the least in the case of motion parallel to them.

Their difference can be quite significant when the spacings between the droplet and the confining boundaries are small.
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Therefore, the direction of migration of a fluid sphere at a position between two parallel plane walls is different from

that of the applied force, except when it is oriented parallel or perpendicular to the plane walls.
4. Formulation for the motion of a slip solid sphere perpendicular to two plane walls

The quasisteady creeping motion caused by a solid spherical particle of radius a translating with a velocity U ¼ Uez

in a quiescent incompressible and Newtonian fluid perpendicular to two infinite parallel plane walls whose distances

from the center of the particle are b and c, as shown in Fig. 1, is considered in this section. The Knudsen number l/a is

assumed to be small so that the fluid flow is in the continuum regime. The objective is to determine the correction to Eq.

(2) for the motion of the particle due to the presence of the plane walls.

The governing equation, the boundary conditions at the plane walls and at infinity, and the sufficiently general

solution for the fluid flow are still given by Eqs. (4a), (8), (9), and (15). Now, the boundary conditions for the fluid

velocity at the particle surface become (Basset, 1961; Happel and Brenner, 1983)

r ¼ a : vr ¼
1

b
try cos y, (18a)

vz ¼ U �
1

b
try sin y, (18b)

where 1/b is the frictional slip coefficient about the surface of the particle. Substituting Eq. (15) into Eq. (18), one

obtains

X1
n¼2

Bn gð1Þ1n ða; yÞ �
Z
b
gn1nða; yÞ cos y

� �
þDn gð1Þ2n ða; yÞ �

Z
b
gn2nða; yÞ cos y

� �	 

¼ 0, (19a)

X1
n¼2

Bn gð2Þ1n ða; yÞ þ
Z
b
gn1nða; yÞ sin y

� �
þDn gð2Þ2n ða; yÞ þ

Z
b
gn2nða; yÞ sin y

� �	 

¼ U , (19b)

where the functions gðjÞin ðr; yÞ and gninðr; yÞ for i and j equal to 1 or 2 have been defined by Eqs. (A.3), (A.4), and (A.14).

Eq. (19) can also be satisfied by utilizing the boundary collocation technique presented in Section 2 for the solution

about a migrating droplet. At the particle surface, Eq. (19) is applied at N discrete points (values of y between 0 and p)
and the infinite series in Eq. (15) are truncated after N terms. This generates a set of 2N linear algebraic equations for

the 2N unknown constants Bn and Dn. The fluid velocity field is completely obtained once these coefficients are solved

for a sufficiently large number of N. Again, the hydrodynamic drag force F ¼ Fez acting on the spherical particle can be

determined from Eq. (17).
5. Solutions for the motion of a slip solid sphere perpendicular to two plane walls

In Section 3 collocation solutions for the migration of a fluid sphere perpendicular to two plane walls at an arbitrary

position between them have been presented and were found to be in excellent agreement with the available solutions for

the limiting cases. This section will examine the solutions for the corresponding motion of a slip solid sphere using the

same collocation method. Now, the system of linear algebraic equations to be solved for the coefficients Bn and Dn is

constructed from Eq. (19).

The collocation solutions of the hydrodynamic drag force acting on a spherical particle translating normal to a plane

wall (with c-N) for different values of the parameters ba/Z and a/b are presented in Table 3. Here, the drag force F0

exerted on an identical particle in an unbounded fluid given by Eq. (2) (with F0 ¼ F0ez) is used to normalize the

boundary-corrected values. Evidently, F=F0 ¼ 1 as a=b ¼ 0 for any value of ba/Z. All of the results obtained under the

collocation scheme converge satisfactorily to at least the significant figures shown in the table. For the special cases of

translation of a no-slip sphere (with ba/Z-N) and of a perfectly slip sphere (with ba=Z ¼ 0) normal to a plane wall, our

numerical results are exactly the same as those presented in Table 1 for the cases of Z�-N and Zn ¼ 0, respectively, as

they should be. Our collocation results for finite values of ba/Z are found to agree very well with the numerical solutions

obtained by using spherical bipolar coordinates (Chen and Keh, 1995). As expected, the results in Table 3 illustrate that

the normalized drag force on the particle is a monotonic increasing function of a/b, and will become infinite in the limit

a=b ¼ 1, for any given value of ba/Z. The normalized drag force in general increases with an increase in ba/Z (or with a
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Table 3

The normalized drag force F/F0 experienced by a slip spherical particle translating normal to a single plane wall at various values of a/b

and ba/Z

a/b F/F0

ba=Z ¼ 1 ba=Z ¼ 3 ba=Z ¼ 10 ba=Z ¼ 30

0.1 1.09203 1.10318 1.11545 1.12194

0.2 1.20202 1.22841 1.25824 1.27436

0.3 1.33571 1.38253 1.43728 1.46776

0.4 1.50256 1.57674 1.66731 1.71979

0.5 1.71919 1.83047 1.97409 2.06195

0.6 2.01769 2.18062 2.40663 2.55550

0.7 2.46968 2.70754 3.07122 3.33704

0.8 3.27889 3.63260 4.25537 4.78768

0.9 5.40032 5.94513 7.18345 8.57327

0.95 9.21176 9.84840 11.85025 14.77138

0.975 16.37460 16.82014 19.54666 24.71630

0.99 37.04963 36.17587 39.16876 48.07314

0.995 70.90285 67.23550 68.98247 80.70473

0.999 338.179 309.2004 291.797 304.0558
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decrease in the slip coefficient b�1), keeping a/b unchanged. When the value of a/b is close to unity (say, greater than

about 0.975), however, F/F0 first decreases with an increase in ba/Z from ba=Z ¼ 0, reaches a minimum at some finite

value of ba/Z, and then increases with increasing ba/Z to the limit ba/Z-N.

A number of converged collocation solutions for the normalized drag force are presented in Table 4 for the

translation of a spherical particle perpendicular to two plane walls at two particular positions between them (with

b=ðbþ cÞ ¼ 0:25 and 0.5) for various values of a/b and ba/Z. For the special cases of a no-slip sphere (with ba/Z-N)

and a perfect-slip sphere (with ba=Z ¼ 0), our results are still the same as those presented in Table 2 for the cases of

Z�-N and Zn ¼ 0, respectively. Analogous to the situation of translation of a slip sphere normal to a single wall, for a

constant value of b/(b+c), Table 4 indicates that the normalized drag force on the particle increase monotonically with

an increase in a/b for a fixed value of ba/Z and with an increase in ba/Z for a given value of a/b not too close to unity.

Again, F=F0 ¼ 1 as a=b ¼ 0 and F/F0-N as a/b-1 for any given values of b/(b+c) and ba/Z. It can be found from a

comparison among Tables 1–4 that the boundary effects on a slip solid sphere with a finite value of ba/Z is different

from those on a spherical fluid droplet with a value of 3Z� equal to ba/Z, although the flow field induced by an isolated

slip solid sphere is equivalent to the external flow field caused by an isolated fluid droplet under this condition.

Fig. 4 shows the normalized drag force exerted on a spherical particle with ba=Z ¼ 10 normal to two plane walls. At a

given value of 2a/(b+c), the particle (or a particle with any other value of ba/Z, whose collocation results are not

exhibited here but can also be obtained accurately) experiences a minimum drag when it is located midway between the

two walls as illustrated in Fig. 2. The drag force becomes infinite as the particle touches either of the walls.

In Fig. 5, the normalized drag force for the motion of a spherical particle located midway between two parallel plane

walls (with c ¼ b) are plotted by solid curves as functions of a/b for various values of ba/Z. The corresponding drag on

the particle when the second wall is not present (with c-N) is also plotted by dashed curves in the same figure for

comparison. It can be seen from this figure (or from a comparison between Table 3 and Table 4) that, for an arbitrary

combination of parameters a/b and ba/Z, the assumption that the results for two walls can be obtained by simple

addition of the single-wall effects also gives too large a correction to the hydrodynamic drag force on a particle.

Since the general problem of creeping motion of a particle in an arbitrary direction between two parallel plane walls is

linear, its solution can be obtained as the vectorial summation of the solutions for its two subproblems: motion

perpendicular to the plane walls, which is examined in this paper, and motion parallel to the walls. The collocation

solutions for the slow motion of a slip sphere parallel to two plane walls have already been obtained (Chen and Keh,

2003), and it was found that, in general, the normalized wall-corrected drag force acting on the particle also increases

with an increase in the parameter ba/Z. A comparison between those results and our solution shows that the plane walls

exert the greatest drag force on the particle when motion occurs normal to them, and the smallest in the case of

migration parallel to them. Therefore, the direction of creeping motion of a particle in the vicinity of two parallel plane

walls is different from that of the applied force, except when it is oriented parallel or perpendicular to the plane walls.
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Table 4

The normalized drag force F/F0 experienced by a slip spherical particle translating normal to two parallel plane walls at various values

of a/b, b/(b+c), and ba/Z

b/(b+c) a/b F/F0

ba=Z ¼ 1 ba=Z ¼ 3 ba=Z ¼ 10 ba=Z ¼ 30

0.25 0.1 1.09338 1.10471 1.11719 1.12378

0.2 1.20524 1.23220 1.26263 1.27908

0.3 1.34161 1.38951 1.44555 1.47676

0.4 1.51100 1.58812 1.68108 1.73492

0.5 1.73329 1.84776 1.99538 2.08554

0.6 2.03770 2.20563 2.43790 2.59042

0.7 2.49740 2.74243 3.11542 3.38674

0.8 3.31613 3.67990 4.31599 4.85625

0.9 5.44933 6.00783 7.26457 8.66552

0.95 9.26761 9.92007 11.94337 14.87754

0.975 16.43417 16.89664 19.64627 24.82997

0.99 37.11149 36.25539 39.27240 48.19151

0.995 70.96550 67.31606 69.08750 80.82471

0.999 338.242 309.2819 291.904 304.1771

0.5 0.1 1.12192 1.13710 1.15391 1.16285

0.2 1.27579 1.31373 1.35721 1.38097

0.3 1.47365 1.54460 1.62930 1.67720

0.4 1.73475 1.85273 2.00065 2.08800

0.5 2.09236 2.27720 2.52319 2.67685

0.6 2.61052 2.89170 3.29498 3.56642

0.7 3.43222 3.85676 4.52850 5.02991

0.8 4.96467 5.61483 6.79865 7.82946

0.9 9.11767 10.14440 12.55398 15.29669

0.95 16.69406 17.90183 21.83610 27.64009

0.975 30.99614 31.82039 37.20293 47.50328

0.99 72.33189 70.51678 76.43143 94.20090

0.995 140.0334 132.6311 136.0535 159.4588

0.999 674.615 616.5868 581.706 606.1816
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6. Conclusions

In this work, the slow translational motions of a spherical fluid or solid particle in a viscous fluid perpendicular to

two parallel plane walls at an arbitrary position between them are studied theoretically, where the fluid may slip at the

particle surface. A semi-analytical method with the boundary collocation technique has been used to solve the Stokes

equation for the fluid flow field. The results for the hydrodynamic drag force exerted on the particle indicate that the

solution procedure converges rapidly and accurate solutions can be obtained for various cases of the particle’s relative

viscosity or slip coefficient and of the separation between the particle and the confining boundaries. It has been found

that, for given relative positions of the walls, the wall-corrected drag force acting on the particle normalized by the value

in the absence of the walls in general is an increasing function of the internal-to-external viscosity ratio or a decreasing

function of the dimensionless slip coefficient. For a given particle translating between two parallel plane walls separated

by a fixed distance, the particle experiences a minimum drag force when it is located midway between the walls, and the

drag force becomes infinite as the particle touches either of the walls.

The hydrodynamic drag force acting on a slip spherical particle migrating parallel to two infinite plane walls at an

arbitrary position between them was calculated in previous works (Keh and Chen, 2001; Chen and Keh, 2003) for

various values of the parameters Z� or ba/Z, a/b, and b/(b+c), and it was also found that the normalized drag force

increases with an increase in a/b and in general increases with increasing Z� or ba/Z. However, the boundary effect on

the motion of a particle is much stronger for the perpendicular migration. For the general problem of a slip particle

migrating in an arbitrary direction with respect to the two parallel plane walls, the solution can be obtained by adding

both the parallel and transverse results vectorially.
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Fig. 5. Plots of the normalized drag force F/F0 on a slip spherical particle situated midway between two parallel plane walls (with

c ¼ b) undergoing perpendicular translation versus the ratio a/b with ba/Z as a parameter. The dashed curves are plotted for the

translation of an identical particle normal to a single plane wall for comparison.
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Fig. 4. Plots of the normalized drag force F/F0 on a slip spherical particle (with ba=Z ¼ 10) translating perpendicular to two plane

walls versus the ratio b/(b+c) with a/b and 2a/(b+c) as parameters.
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Appendix A. Definitions of some functions in Sections 2 and 4

The functions aðjÞin and gðjÞin for i and j equal to 1 or 2 in Eqs. (14)–(16) and (19) are defined by

að1Þin ðr; yÞ ¼ �rnþ2i�4 ðnþ 1ÞG
�1=2
nþ1 ðcos yÞ csc y� ð2nþ 2i � 3ÞG�1=2n ðcos yÞ cot y

h i
, (A.1)

að2Þin ðr; yÞ ¼ �rnþ2i�4 ð2nþ 2i � 3ÞG�1=2n ðcos yÞ þ Pnðcos yÞ
h i

; (A.2)

gð1Þin ðr; yÞ ¼ �
Z 1
0

G00þðs; ZÞB
0
inðo;�bÞ � G00þðZ; sÞB

0
inðo; cÞ

�
�G0þðs; ZÞB

00
inðo;�bÞ þ G0þðZ; sÞB

00
inðo; cÞ

�
oJ1ðor sin yÞdo

� r�nþ2i�3 ðnþ 1ÞG
�1=2
nþ1 ðcos yÞ csc y� 2ði � 1ÞG�1=2n ðcos yÞ cot y

h i
, ðA:3Þ

gð2Þin ðr; yÞ ¼ �
Z 1
0

�G0�ðs; ZÞB
0
inðo;�bÞ þ G0�ðZ;sÞB

0
inðo; cÞ

�
þ G00�ðs; ZÞB

00
inðo;�bÞ � G00�ðZ; sÞB

00
inðo; cÞ

�
oJ0ðor sin yÞdo

� r�nþ2i�3 Pnðcos yÞ þ 2ði � 1ÞG�1=2n ðcos yÞ
h i

, ðA:4Þ

where

B01nðo; zÞ ¼ �
1

n!

o zj j

z

� �n�1

e�o zj j, (A.5)

B001nðo; zÞ ¼ �
on�1

n!

zj j

z

� �n

e�o zj j, (A.6)

B02nðo; zÞ ¼ �
1

n!

o zj j

z

� �n�3

ð2n� 3Þo zj j � nðn� 2Þ½ �e�o zj j, (A.7)

B002nðo; zÞ ¼ �
on�3

n!

zj j

z

� �n

ð2n� 3Þo zj j � ðn� 1Þðn� 3Þ½ �e�o zj j, (A.8)

G0�ðm; nÞ ¼ tnmnðm0 � t0n0Þ, (A.9)

G00�ðm; nÞ ¼ tn nðcosh m� t0n0Þ � mðm0 � t0 cosh nÞ½ �; (A.10)

m0 ¼
sinh m
m

; n0 ¼
sinh n
n

; t0 ¼
sinh t
t

; tn ¼
t

sinh2t� t2
, (A.11)

s ¼ oðr cos yþ bÞ; Z ¼ oðr cos y� cÞ; t ¼ oðbþ cÞ. (A.12)

The functions anin and gnin for i equal to 1 or 2 in Eqs. (16d) and (19) are defined by

aninðr; yÞ ¼ � rnþ2i�5 ðnþ 1Þðnþ 2i � 5ÞG
�1=2
nþ1 ðcos yÞ cot y

h

� ðnþ 2i � 5Þð2nþ 2i � 3ÞG�1=2n ðcos yÞ csc y

þ ð5� 2i þ n cot2 yÞPnðcos yÞ sin y� nPn�1ðcos yÞ cot y
i
, ðA:13Þ

gninðr; yÞ ¼ � cos y sin y Cn

inðr; yÞ þDn

inðr; yÞ
� �

� ðcos2 y� sin2 yÞ Cnn

in ðr; yÞ þDnn

in ðr; yÞ
� �

, (A.14)

where

Cn

1nðr; yÞ ¼ � 2r�ðnþ2Þ ðnþ 1Þðnþ csc2 yÞG�1=2nþ1 ðcos yÞ � ð3nþ 2ÞPnðcos yÞ cos y
h

þnPn�1ðcos yÞ
i
, ðA:15Þ
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Cn

2nðr; yÞ ¼ 2r�n 2ð2n� 1þ cot2 yÞG�1=2n ðcos yÞ cos y� ðnþ 1Þðn� 1þ cot2 yÞG�1=2nþ1 ðcos yÞ
h

�ðnþ 2� 4sin2 yÞPn�1ðcos yÞ þ 3nPnðcos yÞ cos y
i
, ðA:16Þ

Cnn

1n ðr; yÞ ¼ � r�ðnþ2Þ n cot y ðnþ 1ÞG
�1=2
nþ1 ðcos yÞ þ Pn�1ðcos yÞ

h in

þ ð3nþ 2Þ sin y� n csc y½ �Pnðcos yÞ
o
, ðA:17Þ

Cnn

2n ðr; yÞ ¼ � r�n 2 2ðn� 1Þ sin y� ðn� 2Þ csc y½ �G�1=2n ðcos yÞ
n

þ ðn2 � n� 2ÞG
�1=2
nþ1 ðcos yÞ cot yþ ðn� 4sin2 yÞPn�1ðcos yÞ cot y

þnð3 sin y� csc yÞPnðcos yÞ
o
, ðA:18Þ

Dn

inðr; yÞ ¼
Z 1
0

G00þðs; ZÞB
0
inðo;�bÞ � G00þðZ; sÞB

0
inðo; cÞ

��
�G0þðs; ZÞB

00
inðo;�bÞ þ G0þðZ; sÞB

00
inðo; cÞ

�
J0ðor sin yÞ � J2ðor sin yÞ½ �

þ 2 Gn

�ðs; ZÞB
0
inðo;�bÞ � Gn

�ðZ; sÞB
0
inðo; cÞ

�
�Gnn

� ðs; ZÞB
00
inðo;�bÞ þ Gnn

� ðZ; sÞB
00
inðo; cÞ

�
J0ðor sin yÞ

�
o2 do, ðA:19Þ

Dnn

in ðr; yÞ ¼
Z 1
0

G��þ ðs; ZÞB
0
inðo;�bÞ � Gnn

þ ðZ; sÞB
0
inðo; cÞ � Gn

þðs; ZÞB
00
inðo;�bÞ

��
þG�þðZ; sÞB

00
inðo; cÞ

�
þ G0�ðs; ZÞB

0
inðo;�bÞ � G0�ðZ; sÞB

0
inðo; cÞ

�
�G00�ðs; ZÞB

00
inðo;�bÞ þ G00�ðZ; sÞB

00
inðo; cÞ

��
o2J1ðor sin yÞdo ðA:20Þ

and

Gn

�ðm; nÞ ¼ tn ðmþ nÞðm0 � t0n0Þ þ nðcosh m� m0Þ � t0mðcosh n� n0Þ½ �, (A.21)

Gnn

� ðm; nÞ ¼ tn cosh m� t0n0 � ðm0 � t0 cosh nÞ þ n sinh m� t0ðcosh n� n0Þ½

�ðcosh m� m0 � t0m sinh nÞ�. ðA:22Þ
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